Pandas Series - cov() function
The Pandas Series cov() function computes covariance of a Series with other Series, excluding missing values. Both NA and null values are automatically excluded from the calculation.
Syntax
Series.cov(other, min_periods=None, ddof=1)
Parameters
other |
Required. Specify a Series with which to compute the covariance. |
min_periods |
Optional. An int to specify minimum number of observations required to have a valid result. |
ddof |
Optional. Specify Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. |
Return Value
Returns covariance with other.
Example: using cov() on a Series
In the example below, the cov() function is used to calculate the covariance of given series.
import pandas as pd import numpy as np GDP = pd.Series([1.02, 1.03, 1.04, 0.98]) HDI = pd.Series([1.02, 1.01, 1.02, 1.03]) print("The GDP contains:") print(GDP, "\n") print("The HDI contains:") print(HDI, "\n") #calculating covariance print("GDP.cov(HDI) returns:") print(GDP.cov(HDI))
The output of the above code will be:
The GDP contains: 0 1.02 1 1.03 2 1.04 3 0.98 dtype: float64 The HDI contains: 0 1.02 1 1.01 2 1.02 3 1.03 dtype: float64 GDP.cov(HDI) returns: -0.00016666666666666696
Example: using cov() on selected series in a DataFrame
Similarly, the cov() function can be applied on selected series/column of a given DataFrame. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "GDP": [1.02, 1.03, 1.04, 0.98], "GNP": [1.05, 0.99, np.nan, 1.04], "HDI": [1.02, 1.01, 1.02, 1.03], "Agriculture": [1.02, 1.02, 0.99, 0.98]}, index= ["Q1", "Q2", "Q3", "Q4"] ) print("The DataFrame is:") print(df) #covariance matrix using GDP and HDI series print("\ndf['GDP'].cov(df['HDI']) returns:") print(df['GDP'].cov(df['HDI']))
The output of the above code will be:
The DataFrame is: GDP GNP HDI Agriculture Q1 1.02 1.05 1.02 1.02 Q2 1.03 0.99 1.01 1.02 Q3 1.04 NaN 1.02 0.99 Q4 0.98 1.04 1.03 0.98 df['GDP'].cov(df['HDI']) returns: -0.00016666666666666696
❮ Pandas Series - Functions