Pandas Series - mode() function
The Pandas Series mode() function returns the mode(s) of the series. The syntax for using this function is mentioned below:
Syntax
Series.mode(dropna=None)
Parameters
dropna |
Optional. Specify True to exclude NA/null values when computing the result. Default is True. |
Return Value
Returns mode(s) of the Series in sorted order.
Example: using mode() on a Series
In the example below, the mode() function is used to get the mode of values of a given series.
import pandas as pd import numpy as np idx = pd.MultiIndex.from_arrays([ ['even', 'even', 'even', 'even', 'odd', 'odd', 'odd', 'odd']], names=['DataType']) x = pd.Series([10, 20, 20, 30, 5, 5, 7, 9], name='Numbers', index=idx) print("The Series contains:") print(x) #mode of all values in the series print("\nx.mode() returns:") print(x.mode())
The output of the above code will be:
The Series contains: DataType even 10 even 20 even 20 even 30 odd 5 odd 5 odd 7 odd 9 Name: Numbers, dtype: int64 x.mode() returns: 0 5 1 20 dtype: int64
Example: using mode() on selected series in a DataFrame
Similarly, the mode() function can be applied on selected series/column of a given DataFrame. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [62, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #mode of all values of 'Salary' series print("\ndf['Salary'].mode() returns:") print(df["Salary"].mode())
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 62 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].mode() returns: 0 62 dtype: int64
❮ Pandas Series - Functions