Pandas Series - sum() function
The Pandas Series sum() function returns the sum of the values over the specified axis. The syntax for using this function is mentioned below:
Syntax
Series.sum(axis=None, skipna=None, level=None, numeric_only=None, min_count=0)
Parameters
axis |
Optional. Specify {0 or 'index'}. Specify axis for the function to be applied on. |
skipna |
Optional. Specify True to exclude NA/null values when computing the result. Default is True. |
level |
Optional. Specify level (int or str). If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. A str specifies the level name. |
numeric_only |
Optional. Specify True to include only float, int or boolean data. Default: False |
min_count |
Optional. Specify required number of valid values to perform the operation. If the count of non-NA values is less than the min_count, the result will be NA. |
Return Value
Returns scalar or Series if a level is specified.
Example: using sum() on a Series
In the example below, the sum() function is used to get the sum of values of a given series.
import pandas as pd import numpy as np idx = pd.MultiIndex.from_arrays([ ['even', 'even', 'even', 'odd', 'odd', 'odd']], names=['DataType']) x = pd.Series([10, 20, 30, 5, 7, 9], name='Numbers', index=idx) print("The Series contains:") print(x) #Sum of all values in the series print("\nx.sum() returns:") print(x.sum()) #Sum of all values within given level print("\nx.sum(level='DataType') returns:") print(x.sum(level='DataType')) print("\nx.sum(level=0) returns:") print(x.sum(level=0))
The output of the above code will be:
The Series contains: DataType even 10 even 20 even 30 odd 5 odd 7 odd 9 Name: Numbers, dtype: int64 x.sum() returns: 81 x.sum(level='DataType') returns: DataType even 60 odd 21 Name: Numbers, dtype: int64 x.sum(level=0) returns: DataType even 60 odd 21 Name: Numbers, dtype: int64
Example: using sum() on selected series in a DataFrame
Similarly, the sum() function can be applied on selected series/column of a given DataFrame. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame({ "Bonus": [5, 3, 2, 4], "Last Salary": [58, 60, 63, 57], "Salary": [60, 62, 65, 59]}, index= ["John", "Marry", "Sam", "Jo"] ) print("The DataFrame is:") print(df) #sum of values of 'Salary' series print("\ndf['Salary'].sum() returns:") print(df["Salary"].sum())
The output of the above code will be:
The DataFrame is: Bonus Last Salary Salary John 5 58 60 Marry 3 60 62 Sam 2 63 65 Jo 4 57 59 df['Salary'].sum() returns: 246
❮ Pandas Series - Functions