Perl Math - tanh() Function
The Perl Math tanh() function returns hyperbolic tangent of a value. The hyperbolic tangent of x is defined as:
where e is an Euler's number.
In special cases it returns the following:
- If the argument is NaN, then the result is NaN.
- If the argument is positive infinity, then the result is 1.
- If the argument is negative infinity, then the result is -1.
Syntax
tanh(x)
Parameters
x |
Specify the value. |
Return Value
Returns the hyperbolic tangent of a value.
Example:
In the example below, tanh() function is used to find out the hyperbolic tangent of a value.
use Math::Trig; print("tanh(-2) = ".tanh(-2)."\n"); print("tanh(-1) = ".tanh(-1)."\n"); print("tanh(0) = ".tanh(0)."\n"); print("tanh(1) = ".tanh(1)."\n"); print("tanh(2) = ".tanh(2)."\n"); print("tanh(Inf) = ".tanh(Inf)."\n"); print("tanh(-Inf) = ".tanh(-Inf)."\n"); print("tanh(NaN) = ".tanh(NaN)."\n");
The output of the above code will be:
tanh(-2) = -0.964027580075817 tanh(-1) = -0.761594155955765 tanh(0) = 0 tanh(1) = 0.761594155955765 tanh(2) = 0.964027580075817 tanh(Inf) = 1 tanh(-Inf) = -1 tanh(NaN) = NaN
This function can also be used to calculate complex hyperbolic tangent of a complex number z. It is a function on complex plane, and has no branch cuts. It is periodic with respect to the imaginary component, with period 𝜋i, and has poles of the first order along the imaginary line, at coordinates (0, 𝜋(1/2 + n)). However no common floating-point representation is able to represent 𝜋/2 exactly.
Mathematically, it can be expressed as:
Example:
In the example below, tanh() function is used to find out the complex hyperbolic tangent of the given number.
use Math::Complex; $z1 = 2 + 2*i; $z2 = 2; $z3 = 2*i; print("tanh($z1) = ".tanh($z1)."\n"); print("tanh($z2) = ".tanh($z2)."\n"); print("tanh($z3) = ".tanh($z3)."\n");
The output of the above code will be:
tanh(2+2i) = 1.02383559457047-0.0283929528682322i tanh(2) = 0.964027580075817 tanh(2i) = -2.18503986326152i
❮ Perl Math Functions