Pandas DataFrame - kurt() function
The Pandas DataFrame - kurt() function is used to return the unbiased kurtosis over the specified axis. The syntax for using this function is mentioned below:
Syntax
DataFrame.kurt(axis=None, skipna=None, level=None, numeric_only=None)
Parameters
axis |
Optional. Specify {0 or 'index', 1 or 'columns'}. If 0 or 'index' kurtosis are generated for each column. If 1 or 'columns' kurtosis are generated for each row. Default: 0 |
skipna |
Optional. Specify True to exclude NA/null values when computing the result. Default is True. |
level |
Optional. Specify level (int or str). If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. A str specifies the level name. |
numeric_only |
Optional. Specify True to include only float, int or boolean data. Default: False |
Return Value
Returns kurtosis of Series or DataFrame if a level is specified.
Example: Using kurt() column-wise on whole DataFrame
In the below example, a DataFrame df is created. The kurt() function is used to get the kurtosis for each column.
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index = pd.date_range('1/1/2018', periods=5), columns = ['col_A', 'col_B', 'col_C']) print("The DataFrame is:") print(df) #kurtosis of all entries column-wise print("\ndf.kurt() returns:") print(df.kurt())
The output of the above code will be:
The DataFrame is: col_A col_B col_C 2018-01-01 0.343682 0.467754 0.731566 2018-01-02 0.588945 0.307980 0.397823 2018-01-03 -0.146330 -1.040161 -0.471874 2018-01-04 -0.732584 1.286889 0.022817 2018-01-05 0.422361 -0.613827 0.077464 df.kurt() returns: col_A 0.194701 col_B -1.141722 col_C 0.220942 dtype: float64
Example: Using kurt() row-wise on whole DataFrame
To get the row-wise sum, the axis parameter can set to 1. Consider the below example.
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 4), index = pd.date_range('1/1/2018', periods=5), columns = ['col_A', 'col_B', 'col_C', 'col_D']) print("The DataFrame is:") print(df) #kurtosis of all entries row-wise print("\ndf.kurt(axis=1) returns:") print(df.kurt(axis=1))
The output of the above code will be:
The DataFrame is: col_A col_B col_C col_D 2018-01-01 -1.084664 0.845539 -0.435067 1.134583 2018-01-02 -1.717466 0.867263 0.427472 -0.721495 2018-01-03 1.054415 0.712278 0.149711 0.161991 2018-01-04 -0.147741 0.508162 -0.442463 0.004561 2018-01-05 2.680119 0.323035 -0.385693 -1.075277 df.kurt(axis=1) returns: 2018-01-01 -3.867439 2018-01-02 -2.201512 2018-01-03 -3.233237 2018-01-04 1.134319 2018-01-05 1.803169 Freq: D, dtype: float64
Example: Using kurt() on selected column
Instead of whole data frame, the kurt() function can be applied on selected columns. Consider the following example.
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index = pd.date_range('1/1/2018', periods=5), columns = ['col_A', 'col_B', 'col_C']) print("The DataFrame is:") print(df) #kurtosis of single column print("\ndf['col_B'].kurt() returns:") print(df["col_B"].kurt()) #kurtosis of multiple columns print("\ndf[['col_B', 'col_C']].kurt() returns:") print(df[["col_B", "col_C"]].kurt())
The output of the above code will be:
The DataFrame is: col_A col_B col_C 2018-01-01 0.219180 -0.912130 1.380747 2018-01-02 0.074638 -0.573183 1.960372 2018-01-03 0.586829 -0.440437 0.082292 2018-01-04 0.350402 0.591841 0.186822 2018-01-05 -0.277738 2.114145 0.084803 df['col_B'].kurt() returns: 0.979547037482 df[['col_B', 'col_C']].kurt() returns: col_B 0.979547 col_C -1.928345 dtype: float64
❮ Pandas DataFrame - Functions