C Examples

C Program - Find all Prime Numbers in a given Interval



A Prime number is a natural number greater than 1 and divisible by 1 and itself only, for example: 2, 3, 5, 7, etc.

Objective: Write a C code to find all prime numbers in a given internal.

Method 1: Using function to find prime number

In the example below, a function called primenumber() is created which takes a number as argument and checks it for prime number by dividing it with all natural numbers starting from 2 to N/2.

#include <stdio.h>

static void primenumber(int);

static void primenumber(int MyNum) {
  int n = 0;
  for(int i = 2; i < (MyNum/2+1); i++) {
    if(MyNum % i == 0) {
      n++;
      break;
    }
  }
  if (n == 0) {
    printf("%i ", MyNum);
  } 
}

int main() {
  int x = 10;
  int y = 50;
  printf("Prime numbers between %i and %i are:\n", x, y);
  for(int i = x; i < y + 1; i++) {
    primenumber(i);
  }
  return 0;
}

The above code will give the following output:

Prime numbers between 10 and 50 are:
11 13 17 19 23 29 31 37 41 43 47

Method 2: Optimized Code

  • Instead of checking the divisibility of given number from 2 to N/2, it is checked till square root of N. For a factor larger than square root of N, there must the a smaller factor which is already checked in the range of 2 to square root of N.
  • Except from 2 and 3, every prime number can be represented into 6k ± 1.
#include <stdio.h>

static void primenumber(int);

static void primenumber(int MyNum) {
  int n = 0;
  if (MyNum == 2 || MyNum == 3) {
    printf("%i ", MyNum);
  } 
  else if (MyNum % 6 == 1 || MyNum % 6 == 5) {
    for(int i = 2; i*i <= MyNum; i++) {
      if(MyNum % i == 0){
        n++;
        break;
      }
    }
    if (n == 0) {
      printf("%i ", MyNum);
    } 
  } 
}

int main() {
  int x = 100;
  int y = 200;
  
  printf("Prime numbers between %i and %i are:\n", x, y);
  for(int i = x; i < y + 1; i++) {
    primenumber(i);
  }
  return 0;
}

The above code will give the following output:

Prime numbers between 100 and 200 are:
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199