# C++ <cmath> - FP_FAST_FMA, FP_FAST_FMAF, FP_FAST_FMAL

The C++ <cmath> fma() function returns (x*y) + z. The function computes the result without losing precision and rounded only once to fit the result type.

FP_FAST_FMA, FP_FAST_FMAF and FP_FAST_FMAL macro constants can be defined in an implementation to signal the function to evaluate faster (in addition to being more precise) than the expression (x*y) + z for float, double, and long double arguments, respectively. If defined, these macros evaluate to integer 1.

MacrosDescription
FP_FAST_FMA When defined, function fma() evaluates faster (in addition to being more precise) than the expression (x*y) + z for type double.
FP_FAST_FMAF When defined, function fma() evaluates faster (in addition to being more precise) than the expression (x*y) + z for type float.
FP_FAST_FMAL When defined, function fma() evaluates faster (in addition to being more precise) than the expression (x*y) + z for type long double.

Definition in the <cmath> header file is:

```#define FP_FAST_FMA  /* implementation-defined */
#define FP_FAST_FMAF /* implementation-defined */
#define FP_FAST_FMAL /* implementation-defined */
```

### Example:

The example below shows the usage of these macro constants.

```#include <iostream>
#include <cmath>
using namespace std;

int main (){
double x, y, z, result;
x = 2.1;
y = 4.2;
z = 10.3;

#ifdef FP_FAST_FMA
result = fma(x, y, z);
#else
result = (x * y) + z;
#endif

cout<<"(x * y) + z = "<<result;

return 0;
}
```

The output of the above code will be:

```(x * y) + z = 19.12
```

❮ C++ <cmath> Library

5