# C++ Program - Fibonacci Sequence

Fibonacci terms are generally represented as $F_n$. A Fibonacci term is the sum of two previous terms and starts with $0$ and $1$. Mathematically, it can be represented as:

$F_n$ = $F_{n-1}$ + $F_{n-2}$

With boundary conditions: $F_0$ = 0 and $F_1$ = 1

The Fibonacci Sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233...

### Example: Using Recursive function

In the below example, a recursive function called fib() is created to find out the nth term of Fibonacci sequence.

#include <iostream>
using namespace std;

static int fib(int);

static int fib(int n) {
if (n == 0)
{return 0;}
else if (n == 1)
{return 1;}
else
{return fib(n-1) + fib(n-2);}
}

int main() {
cout<<"Fibonacci 5th term: "<<fib(5)<<"\n";
cout<<"Fibonacci 6th term: "<<fib(6)<<"\n";
cout<<"Fibonacci 7th term: "<<fib(7)<<"\n";
return 0;
}


Output

Fibonacci 5th term: 5
Fibonacci 6th term: 8
Fibonacci 7th term: 13


### Example: Using Dynamic Programming

The Fibonacci term can also be estimated using dynamic programming. As compared to the recursive function, it calculates a specific term of the sequence only once.

#include <iostream>
using namespace std;

static int fib(int);

static int fib(int n) {
//creating array which contains Fibonacci terms
int f[n+1];
f = 0;
f = 1;
for(int i = 2; i <= n ; i++)
{
f[i] = f[i-1] + f[i-2];
}
return f[n];
}

int main() {
cout<<"Fibonacci 6th term: "<<fib(6)<<"\n";
cout<<"Fibonacci 7th term: "<<fib(7)<<"\n";
cout<<"Fibonacci 8th term: "<<fib(8)<<"\n";
return 0;
}


Output

Fibonacci 6th term: 8
Fibonacci 7th term: 13
Fibonacci 8th term: 21


### Example: Using Ternary Operator

This can also be achieved using ternary operator.

#include <iostream>
using namespace std;

static int fib(int);

static int fib(int n) {
int y = (n == 0)? 0 : (n == 1) ? 1 : fib(n-1) + fib(n-2);
return y;
}

int main() {
cout<<"Fibonacci 8th term: "<<fib(8)<<"\n";
cout<<"Fibonacci 9th term: "<<fib(9)<<"\n";
cout<<"Fibonacci 10th term: "<<fib(10)<<"\n";
return 0;
}


Output

Fibonacci 8th term: 21
Fibonacci 9th term: 34
Fibonacci 10th term: 55


### Example: Space optimized method

In this method, only three variables are used which changes in each iteration and finally nth term of Fibonacci Sequence is calculated.

#include <iostream>
using namespace std;

static int fib(int);

static int fib(int n) {
int a = 0, b = 1, c = 0;
if (n == 0)
{return a;}
for(int i = 2; i <= n; i++)
{
c = a + b;
a = b;
b = c;
}
return b;
}

int main() {
cout<<"Fibonacci 9th term: "<<fib(9)<<"\n";
cout<<"Fibonacci 10th term: "<<fib(10)<<"\n";
cout<<"Fibonacci 11th term: "<<fib(11)<<"\n";
return 0;
}


Output

Fibonacci 9th term: 34
Fibonacci 10th term: 55
Fibonacci 11th term: 89


### Example: Using power of matrix

A Fibonacci sequence term can also be calculated as power of matrix. A Fibonacci sequence holds below mentioned property:

$\begin{pmatrix}1 & 1\\\ 1 & 0\end{pmatrix}^n$ = $\begin{pmatrix}F_{n+1} & F_n\\\ F_n & F_{n-1}\end{pmatrix}$

To calculate $F_n$, $A = \begin{pmatrix}1 & 1\\\ 1 & 0\end{pmatrix}^n$ is calculated and $A_{01}$ will be the $F_n$.

#include <iostream>
using namespace std;

static int fib(int);

static int fib(int n) {
int initial = {{1,1},{1,0}};
int Final = {{1,1},{1,0}};
int a, b, c, d;
if (n == 0)
{return 0;}
else
{
for(int i = 1; i < n ; i++)
{
a = Final*initial + Final*initial;
b = Final*initial + Final*initial;
c = Final*initial + Final*initial;
d = Final*initial + Final*initial;
Final = a;
Final = b;
Final = c;
Final = d;
}

}
return Final;
}

int main() {
cout<<"Fibonacci 10th term: "<<fib(10)<<"\n";
cout<<"Fibonacci 11th term: "<<fib(11)<<"\n";
cout<<"Fibonacci 12th term: "<<fib(12)<<"\n";
return 0;
}


Output

Fibonacci 10th term: 55
Fibonacci 11th term: 89
Fibonacci 12th term: 144