# NumPy - asarray() function

The NumPy asarray() function is used to convert the input to an array. The syntax for using this function is given below:

### Syntax

```numpy.asarray(a, dtype=None, order=None)
```

### Parameters

 `a` `Required. `Specify the input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. `dtype` `Optional. `Specify the desired data type. By default, the data-type is inferred from the input data. `order` `Optional. `Specify whether to store the result. Two possible values are: C (C-style) and F (Fortran-style). Default: 'C'

### Return Value

Returns an array interpretation of a.

### Example: Create numpy array

In the example below, the asarray() function is used to create a numpy array from an existing data.

```import numpy as np

x1 = [10, 20, 30, 40, 50, 60]
x2 = (100, 200, 300)
x3 = [[10, 20, 30], [40, 50, 60]]

#creating numpy array from a list
Arr1 = np.asarray(x1)
print("Arr1 is:", Arr1)

#creating numpy array from a tuple
Arr2 = np.asarray(x2, dtype=float)
print("\nArr2 is:", Arr2)

#creating numpy array from a list of list
Arr3 = np.asarray(x3)
print("\nArr3 is:\n", Arr3)
```

The output of the above code will be:

```Arr1 is: [10 20 30 40 50 60]

Arr2 is: [100. 200. 300.]

Arr3 is:
[[10 20 30]
[40 50 60]]
```

❮ NumPy - Functions

5